特惠-26考研冲刺
特惠-27考研课
双证-在职硕士
免联考-同等学力
26考研-肖八笔记
26考研-时政刷题
26考研-作文押题
26考研-全套真题
26考研-提前估分
保研-路线图
27考研-智能择校
27考研-英语测评
27考研-新大纲对比
热门-计算机择校
扫码加入训练营
牢记核心词
学习得礼盒
上海科技大学硕士研究生入学考试
《信号与系统》考试大纲
一、考试形式
考试采取闭卷笔试形式,考试时间180分钟,总分150分。
二、试卷结构
【专业课必备:2026考研自命题考试大纲】
试题采用简答、填空、选择、判断对错、计算、以及证明等形式。
三、考试科目
信号与系统
四、考试大纲
(一)概论
1. 信号的描述、分类;
2. 信号的基本运算;
3. 典型的连续时间与离散时间信号示例;
4. 单位阶跃信号与单位冲激信号;
5. 系统的模型与分析方法;
6. 系统基本特性。
(二)线性时不变系统
1. 离散时间线性时不变系统及卷积和;
2. 连续时间线性时不变系统及卷积积分;
3. 线性时不变系统的性质
4. 冲激响应与阶跃响应;
5. 卷积的定义、性质、计算等;
6. 差分方程的建立与求解;
7. 微分方程的建立与求解;
8. 零输入响应与零状态响应的定义和求解。
(三)傅里叶级数
1. 信号的正交分解;
2. 连续时间周期信号的傅里叶级数展开、性质、计算等;
3. 离散时间周期信号的傅里叶级数展开、性质、计算等;
4. 典型周期信号的频谱;
5. 微分方程表示连续时间滤波器;
6. 差分方程表示离散时间滤波器。
(四)傅里叶变换
1. 傅里叶变换及典型非周期信号的频谱密度函数;
2. 傅里叶变换的性质与计算;
3. 周期信号的傅里叶变换;
4. 连续时间与离散时间系统的频域分析;
5. 连续时间与离散时间系统的傅里叶分析应用;
6. 能量信号与功率信号、能量谱与功率谱。
(五)拉普拉斯变换
1. 拉普拉斯变换的定义与收敛域和逆拉普拉斯变换;
2. 拉普拉斯变换的性质与运算;
3. 常用函数的拉普拉斯变换;
4. 拉普拉斯变换与傅里叶变换的关系;
5. 线性系统拉普拉斯变换求解;
6. 系统函数与冲激响应;
7. S 域分析、系统的零极点分析、系统性能判断;
8. 单边拉普拉斯变换。
(六)Z变换
1. Z 变换的定义与收敛域和逆Z变换;
2. Z 变换的性质与运算;
3. 典型序列的Z变换;
4. Z 变换与拉普拉斯变换和傅里叶变换的关系;
5. 线性系统Z变换求解;
6. 系统函数与冲激响应;
7. Z域分析、系统的零极点分析、系统性能判断;
8. 单边Z变换。
(七)采样
1. 采样定理;
2. 由采样信号恢复连续时间信号;
3. 频谱混叠;
4. 离散系统处理连续时间信号;
5. 离散时间信号重采样。
五、考试要求
(一)概论
1. 掌握信号的基本分类方法,掌握连续时间信号和离散时间信号,周期信号和非
周期信号,奇信号与偶信号的定义和表示方法;
2. 熟练掌握连续和离散时间信号的移位、反褶、尺度倍乘等运算,熟悉在运算过
程中表达式对应的波形变化,了解运算的物理背景;
3. 熟练掌握阶跃信号、冲激信号、正弦型信号、指数信号;
4. 熟练掌握连续时间系统与离散时间系统的数学模型;
5. 熟练掌握即时系统与动态系统、稳定系统与非稳定系统、因果系统与非因果系
统、线性系统与非线性系统、时变系统与时不变系统、可逆与不可逆系统的
定义和物理意义,熟悉各种系统基本特性及判别方法。
(二)线性时不变系统
1. 熟练掌握离散时间与连续时间信号的时域表示;
2. 熟练掌握冲激响应与阶跃响应;
3. 灵活运用卷积的定义和性质进行计算;
4. 掌握微分方程的建立与求解;
5. 掌握差分方程的建立与求解;
6. 掌握零输入响应和零状态响应。
(三)傅里叶级数
1. 掌握周期信号的傅里叶级数,包括三角函数形式和指数形式;
2. 熟悉典型周期信号,周期矩形脉冲信号、周期三角脉冲信号、周期半波余弦信
号、周期全波余弦信号频谱的特点及性质;
3. 理解完备正交函数集;
4. 熟练运用傅里叶级数的定义和性质进行计算;
5. 理解连续时间滤波器的微分方程表示;
6. 理解离散时间滤波器的差分方程表示。
(四)傅里叶变换
1. 熟练掌握傅里叶变换;
2. 熟练掌握典型非周期信号,单边指数信号、双边指数信号、矩形脉冲信号、钟
形脉冲信号、升余弦脉冲信号、冲激函数和阶跃函数的傅里叶变换;
3. 灵活运用傅里叶变换的基本性质,对称性、线性、奇偶虚实性、尺度变换特性、
时移特性、频移特性微分特性、积分特性、卷积特性;
4. 掌握周期信号的傅里叶变换;
5. 掌握利用系统函数H(j)求响应,理解其物理意义;
6. 理解无失真传输的定义、特性;
7. 熟练掌握理想低通滤波器的频域特性和冲激响应、阶跃响应;
8. 熟练掌握信号的能量谱和功率谱;
9. 理解系统的物理可实现性、佩利-维纳准则;
10. 掌握希尔伯特变换;
11. 掌握调制与解调以及带通滤波器的运用;
12. 了解模拟滤波器逼近原理;
13. 了解脉冲编码调制、频分复用和时分复用。
(五)拉普拉斯变换
1. 理解拉普拉斯变换对的定义、应用范围、物理意义及收敛域;
2. 掌握常用函数的拉氏变换,阶跃函数、指数函数、冲激函数;
3. 灵活运用拉氏变换的性质,线性、原函数积分、原函数微分、延时、S域平移、
尺度变换、初值、终值、卷积;
4. 理解拉氏变换与傅氏变换的关系;
5. 了解双边拉氏变换和单边拉氏变换;
6. 熟练掌握用拉普拉斯变换法分析电路、S域元件模型;
7. 熟练掌握系统函数的定义、物理意义和系统稳定性的定义与判断;
8. 熟练掌握系统零、极点分布与其时域特征的关系;
9. 熟练掌握利用系统零、极点分布分析系统频率响应的方法。
(六)Z变换
1. 理解Z变换对的定义与收敛域;
2. 掌握典型序列的Z变换;
3. 灵活运用Z变换的性质;
4. 理解Z变换与拉普拉斯变换的关系;
5.熟练掌握离散系统的系统函数和频率响应;
6. 了解单边Z变换。
(七)采样
1. 熟练掌握采样定理,理解抽样脉冲信号的傅里叶变化;
2. 理解由采样信号恢复连续时间信号的原理;
3. 理解频谱混叠的原因及其对信号的影响;
4. 理解离散系统处理连续时间信号的基本原理;
5. 理解离散时间信号重采样,上采样和下采样。
六、主要参考教材
奥本海姆等,《信号与系统》,电子工业出版社,2013,第二版。
郑君里等,《信号与系统》,上下册,高等教育出版社,2011年3月,第三版。
编制单位:上海科技大学
编制日期:2020年4月28日
更新日期:2025年9月24日
【专业课必备:2026考研自命题考试大纲】
【查询2026考研招生人数、招生专业、参考书】
本文关键字: 考研大纲及参考书目
资料下载
2014年-2025年考研历年真题汇总
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
考研大纲PDF电子版下载-历年(附解析)
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
2026年考研政数英备考资料zip压缩包
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
考研英语大纲词汇5500打印版(基础必备)
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
新东方在线考试模拟题【12套】
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
2026年考研专业课知识点总结
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
新东方考研资料下载地址
发布时间:2023-05-17新东方在线考研资料合集
下载方式:微信扫码,获取网盘链接

目录:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
2.2013-2023年专业课考试历年真题及解析PDF版
3.24考研复习备考资料大合集:大纲+备考资料+词汇书+考前押题+自命题
资料介绍:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
、
2.2013-2023年专业课考试历年真题及解析PDF版


3.24考研复习备考资料大合集

3.24考研复习备考资料:考研大纲

3.24考研复习备考资料:政数英备考资料+自命题真题

------------------
考研备考过程中,尤其是专业课部分,参考往年的考试真题,对于我们的复习有更好的帮助。北京大学考研真题资料都有哪些?小编为大家进行了汇总。
北京大学考研真题资料-公共课

北京大学考研真题资料-专业课


以上就是关于“北京大学考研真题资料下载(历年汇总)”的整理,更多考研资料下载,请关注微信获取下载地址。
2024考研公共课必背知识点汇总
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
2013-2023考研历年真题汇总
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
考研英语大纲词汇(PDF可打印)
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
2024考研专业课知识点总结
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
2023考研政治 内部押题 PDF
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
徐涛:23考研预测六套卷
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
考研政数英冲刺资料最新整理
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
23考研答题卡模板打印版
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
2023考研大纲词汇5500PDF电子版
发布时间:2022-07-28扫码添加【考研班主任】
即可领取资料包
考研历年真题(公共课+专业课)
发布时间:2022-07-28扫码添加【考研班主任】
即可领取资料包
考研英语阅读100篇附解析及答案
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
新东方考研学霸笔记整理(打印版)
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
2001-2021年考研英语真题答案(可打印版)
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
考研英语词汇5500(完整版下载)
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
2022考研政审表模板精选10套
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
历年考研真题及答案 下载
发布时间:2021-12-09扫码添加【考研班主任】
即可领取资料包
考研政审表模板汇总
发布时间:2020-06-17扫码添加【考研班主任】
即可领取资料包
近5年考研英语真题汇总
发布时间:2020-06-17扫码添加【考研班主任】
即可领取资料包
考研英语大纲词汇5500
发布时间:2020-06-17扫码添加【考研班主任】
即可领取资料包
2022考研12大学科专业排名汇总
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
2023考研政治复习备考资料【珍藏版】
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
考研英语万能模板+必备词汇+范文
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
考研数学一、二、三历年真题整理
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
添加班主任领资料
添加考研班主任
免费领取考研历年真题等复习干货资料

推荐阅读
《设计史》考试大纲 层次:硕士 考试科目代码:768 适用招生专业:设计(专业学位研究生)(135700) 考试主要内容: 一、
来源 : 网络 2025-10-20 08:53:00 关键字 : 考研大纲及参考书目
《设计理论》考试大纲 层 次:硕士 考试科目代码: 783 适用招生专业:设计学(学术学位研究生)(140300) 考试主要内容:
来源 : 网络 2025-10-20 08:53:00 关键字 : 考研大纲及参考书目
《建筑与城市历史理论》考试大纲 层次:硕士 考试科目代码:789 适用招生专业:建筑学(081300) 考试主要内容: 一、考
来源 : 网络 2025-10-20 08:53:00 关键字 : 考研大纲及参考书目
《专业设计》考试大纲 层次:硕士 考试科目代码:881 适用招生专业:设计学(学术学位研究生)(140300)、设计(专业学位研究生)(
来源 : 网络 2025-10-20 08:53:00 关键字 : 考研大纲及参考书目
《建筑综合设计》考试大纲 层次:硕士 考试科目代码:882 适用招生专业:建筑学(081300) 考试主要内容: 一、考试的基
来源 : 网络 2025-10-20 08:53:00 关键字 : 考研大纲及参考书目
资料下载
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
新东方在线考研资料合集
下载方式:微信扫码,获取网盘链接

目录:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
2.2013-2023年专业课考试历年真题及解析PDF版
3.24考研复习备考资料大合集:大纲+备考资料+词汇书+考前押题+自命题
资料介绍:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
、
2.2013-2023年专业课考试历年真题及解析PDF版


3.24考研复习备考资料大合集

3.24考研复习备考资料:考研大纲

3.24考研复习备考资料:政数英备考资料+自命题真题

------------------
考研备考过程中,尤其是专业课部分,参考往年的考试真题,对于我们的复习有更好的帮助。北京大学考研真题资料都有哪些?小编为大家进行了汇总。
北京大学考研真题资料-公共课

北京大学考研真题资料-专业课


以上就是关于“北京大学考研真题资料下载(历年汇总)”的整理,更多考研资料下载,请关注微信获取下载地址。
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
阅读排行榜
相关内容