扫码加入训练营

牢记核心词

学习得礼盒

2016考研统计学知识要点:主成分和因子分析

2015-04-22 17:46:27来源:网络

应用统计硕士考研需要掌握统计学先关知识点,新东方总结了一些统计学要点,方便大家进行学习。下面是有关主成分和因子分析知识点。

2016考研统计学知识要点:主成分和因子分析

  1.(1)概念:在研究实际问题时,往往需要收集多个变量。但这样会使多个变量间存在较强的相关关系,即这些变量间存在较多的信息重复,直接利用它们进行分析,不但模型复杂,还会因为变量间存在多重共线性而引起较大的误差。为能够充分利用数据,通常希望用较少的新变量代替原来较多的旧变量,同时要求这些新变量尽可能反映原变量的信息。主成分分析和因子分子正是解决这类问题的有效方法。它们能够提取信息,使变量简化降维,从而使问题更加简单直观

  (2)主成分分析:研究如何通过少数几个主成分(principal component)来解释多个变量间的内部结构。即从原始变量中导出少数几个主分量,使它们尽可能多地保留原始变量的信息,且彼此间互不相关

  主成分分析的目的:数据的压缩;数据的解释。常被用来寻找判断事物或现象的综合指标,并对综合指标所包含的信息进行适当的解释。(主成分所代表的原始变量的信息用其方差来表示,一般要求所选主成分的方差总和占全部方差的80%以上就可以了。如果原来的变量之间的相关程度高,降维的效果就会好一些,所选的主成分就会少一些。特征根反映了主成分对原始变量的影响程度,表示引入该主成分后可以解释原始变量的信息。特征根又叫方差,某个特征根占总特征根的比例称为主成分方差贡献率。一般情况下,当特征根小于1时,就不再选作主成分了,因为该主成分的解释力度还不如直接用原始变量解的释力度大。)

  (3)因子分析:与主成分分析类似,它们都是要找出少数几个新的变量来代替原始变量。

  不同之处:主成分分析中的主成分个数与原始变量个数是一样的,即有几个变量就有几个主成分,只不过最后我们确定了少数几个主成分而已。而因子分析则需要事先确定要找几个成分,也称为因子(factor),然后将原始变量综合为少数的几个因子,以再现原始变量与因子之间的关系,一般来说,因子的个数会远远少于原始变量的个数。

  因子分析可以看作是主成分分析的推广和扩展,但它对问题的研究更深入、更细致一些。实际上,主成分分析可以看作是因子分析的一个特例

  简言之,因子分析是通过对变量之间关系的研究,找出能综合原始变量的少数几个因子,使得少数因子能够反映原始变量的绝大部分信息,然后根据相关性的大小将原始变量分组,使得组内的变量之间相关性较高,而不同组的变量之间相关性较低。因此,因子分析属于多元统计中处理降维的一种统计方法,其目的就是要减少变量的个数,用少数因子代表多个原始变量

  (4)因子数量的确定

  用公因子方差贡献率提取:与主成分分析类似,一般累计方差贡献率达到80%以上的前几个因子可以作为最后的公因子

  用特征根提取:一般要求因子对应的特征根要大于1,因为特征根小于1说明该共因子的解释力度太弱,还不如使用原始变量的解释力度大

  实际应用中,因子的提取要结合具体问题而定,在某种程度上,取决于研究者自身的知识和经验

  (5)主成分分析和因子分析都是多元分析中处理降维的两种统计方法。只有当原始数据中的变量之间具有较强的相关关系时,降维的效果才会明显,否则不适合进行主成分分析和因子分析

  主成分和因子的选择标准应结合具体问题而定。在某种程度上取决于研究者的知识和经验,而不是方法本身

  即使得到了满意的主成分或因子,在运用它们对实际问题进行评价、排序等分析时,仍然要保持谨慎,因为主成分和因子毕竟是高度抽象的量,无论如何,它们的含义都不如原始变量清晰

  因子分析可以看作是主成分分析的推广和扩展,而主成分分析则可以看作是因子分析的一个特例。目前因子分析在实际中被广泛应用,而主成分分析通常只作为大型统计分析的中间步骤,几乎不再单独使用



考研英语核心词汇营

背词+听课+练习+督学,学习得礼盒

更多资料
更多>>
更多内容

关注新东方在线考研服务号

获得21考研真题及答案解析

1. 打开手机微信【扫一扫】,识别上方二维码;
2.点击【关注公众号】,获取资料大礼包。

近10年考研真题及答案免费下载
更多>>
更多公开课>>
更多>>
更多资料