扫码加入训练营

牢记核心词

学习得礼盒

中国科学院大学2016考研高等数学(丙)考试大纲

2015-08-14 17:17:28来源:新东方在线

  (二)一元函数微分学

  考试内容

  导数的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数的四则运算 复合函数、反函数、隐函数的导数的求法 参数方程所确定的函数的求导方法 高阶导数的概念 高阶导数的求法 微分的概念和微分的几何意义 函数可微与可导的关系 微分的运算法则及函数微分的求法 一阶微分形式的不变性 微分在近似计算中的应用 微分中值定理 洛必达(L’Hospital)法则 泰勒(Taylor)公式 函数的极值 函数最大值和最小值 函数单调性 函数图形的凹凸性、拐点及渐近线 函数图形的描绘

  考试要求

  1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,掌握函数的可导性与连续性之间的关系。

  2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本的求导方法。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3. 了解高阶导数的概念,会求简单函数的n阶导数。

  4. 会求分段函数的一阶、二阶导数。

  5. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数

  6. 会求反函数的导数。

  7. 理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒定理,掌握这四个定理的简单应用。

  8. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。

  9. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直渐近线,会描绘函数的图形。

  10. 掌握用洛必达法则求未定式极限的方法。

  (三)一元函数积分学

  考试内容

  原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分(无穷限积分、瑕积分) 定积分的应用

  考试要求

  1. 理解原函数的概念,理解不定积分和定积分的概念。

  2. 熟练掌握不定积分的基本公式,熟练掌握不定积分和定积分的性质及定积分中值定理。掌握牛顿-莱布尼茨公式。熟练掌握不定积分和定积分的换元积分法与分部积分法。

  3. 会求有理函数、三角函数有理式和简单无理函数的积分。

  4. 理解变上限定积分定义的函数,会求它的导数。

  5. 理解广义积分(无穷限积分、瑕积分)的概念,掌握无穷限积分、瑕积分的收敛性判别法,会计算一些简单的广义积分。

  6. 会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值。

  (四)多元函数微积分学

  考试内容

  多元函数的概念 二元函数的几何意义 二元函数的极限和连续 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分的概念及求法 多元复合函数、隐函数的求导法 二阶偏导数的求法 多元函数的极值和条件极值 拉格朗日乘数法 多元函数的最大值、最小值及其简单应用 全微分在近似计算中的应用 二重积分的概念及性质 二重积分的计算和应用

  考试要求

  1. 理解多元函数的概念、理解二元函数的几何意义。

  2. 了解二元函数的极限与连续性的概念及基本运算性质,了解有界闭区域上二元连续函数的性质。

  3. 理解多元函数偏导数和全微分的概念,会求偏导数和全微分,掌握多元复合函数偏导数的求法,掌握隐函数的偏导数求法。

  3. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值、最小值,并会解决一些简单的应用问题。

  4. 了解全微分在近似计算中的应用。

  5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标)。

  (五)无穷级数

  考试内容

  常数项级数及其收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域、和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 泰勒级数 初等函数的幂级数展开式 函数的幂级数展开式在近似计算中的应用

  考试要求

  1. 理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件

  2. 掌握几何级数与p级数的收敛与发散情况。

  3. 掌握正项级数收敛性的各种判别法。

  4. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法。

  5. 了解函数项级数的收敛域及和函数的概念。

  6. 理解幂级数的收敛域、收敛半径的概念,并掌握幂级数的收敛半径及收敛域的求法。

  7. 了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。

  8. 掌握一些常见函数如ex、sin x、cos x、ln(1+x)和(1+x)α等的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。

  9. 会利用函数的幂级数展开式进行近似计算。


考研英语核心词汇营

背词+听课+练习+督学,学习得礼盒

更多资料
更多>>
更多内容

关注新东方在线考研服务号

获得21考研真题及答案解析

1. 打开手机微信【扫一扫】,识别上方二维码;
2.点击【关注公众号】,获取资料大礼包。

近10年考研真题及答案免费下载
更多>>
更多公开课>>
更多>>
更多资料