扫码加入训练营

牢记核心词

学习得礼盒

应用统计硕士概率论公式:随机事件和概率

2014-05-27 16:40:10来源:新东方在线编辑整理

应用统计硕士考研考试科目包括统计学和概率论两大部分。为了帮助广大考生掌握专业的理论知识和强硬的实践能力,新东方在线编辑和大家一起分享复习资料和信息,希望考生认真备考。

下面是应用统计硕士概率论公式:随机事件和概率

1)排列组合公式

m个人中挑出n个人进行排列的可能数。

m个人中挑出n个人进行组合的可能数。

2)加法和乘法原理

加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

3)一些常见排列

重复排列和非重复排列(有序)

对立事件(至少有一个)

顺序问题

4)随机试验和随机事件

如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

5)基本事件、样本空间和事件

在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

每进行一次试验,必须发生且只能发生这一组中的一个事件;

任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用 来表示。

基本事件的全体,称为试验的样本空间,用 表示。

一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母ABC表示事件,它们是 的子集。

为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

6)事件的关系与运算

关系:

如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):

如果同时有 ,则称事件A与事件B等价,或称A等于BA=B

AB中至少有一个发生的事件:A B,或者A+B

属于A而不属于B的部分所构成的事件,称为AB的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。

AB同时发生:A B,或者ABA B=Ø,则表示AB不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。

-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。

运算:

结合率:A(BC)=(AB)C A(BC)=(AB)C

分配率:(AB)C=(AC)∩(BC) (AB)∩C=(AC)(BC)

德摩根率:

7)概率的公理化定义

为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件:

1° 0≤P(A)≤1

2° P(Ω) =1

对于两两互不相容的事件

常称为可列(完全)可加性。

则称P(A)为事件 的概率。

8)古典概型

设任一事件 ,它是由 组成的,则有

P(A)= =

9)几何概型

若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A

。其中L为几何度量(长度、面积、体积)。

10)加法公式

P(A+B)=P(A)+P(B)-P(AB)

P(AB)0时,P(A+B)=P(A)+P(B)

11)减法公式

P(A-B)=P(A)-P(AB)

B A时,P(A-B)=P(A)-P(B)

A=Ω时,P( )=1- P(B)

12)条件概率

定义 AB是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1 P( /A)=1-P(B/A)

13)乘法公式

乘法公式:

更一般地,对事件A1A2…An,若P(A1A2…An-1)>0,则有

… …… …

14)独立性

两个事件的独立性

设事件 满足 ,则称事件 是相互独立的。

若事件 相互独立,且 ,则有

若事件 相互独立,则可得到 也都相互独立。

必然事件 和不可能事件Ø与任何事件都相互独立。

Ø与任何事件都互斥。

多个事件的独立性

ABC是三个事件,如果满足两两独立的条件,

P(AB)=P(A)P(B)P(BC)=P(B)P(C)P(CA)=P(C)P(A)

并且同时满足P(ABC)=P(A)P(B)P(C)

那么ABC相互独立。

对于n个事件类似。

15)全概公式

设事件 满足

两两互不相容,

则有

16)贝叶斯公式

设事件 满足

两两互不相容, >0 12

i=12…n

此公式即为贝叶斯公式。

,( ),通常叫先验概率。 ,( ),通常称为后验概率。贝叶斯公式反映了因果的概率规律,并作出了由果朔因的推断。

17)伯努利概型

我们作了 次试验,且满足

u 每次试验只有两种可能结果, 发生或 不发生;

u 次试验是重复进行的,即 发生的概率每次均一样;

u 每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。

这种试验称为伯努利概型,或称为 重伯努利试验。

表示每次试验 发生的概率,则 发生的概率为 ,用 表示 重伯努利试验中 出现 次的概率,


2015考研复习进行中,关注2015考研全程备考规划,更好地安排自己的考研复习。距离考研报名还有135天,关注2015考研报考指南,提前了解相关事宜。暑假在即,暑期备考让你过一个充实的假期。对于跨专业的考生,“三跨”考研为您全方位指点迷津,更要关注2015考研时政大事记理论结合实际,让复习更完备。获取更多2015年考研资料、辅导尽在新东方在线考研

课程推荐:

2015考研应用统计硕士M.A.S432统计学签约全程班

2015考研应用统计硕士M.A.S全科签约联报班

2015考研396经济类联考综合能力三科签约联报班

【选课中心:http://kaoyan.koolearn.com/


本文关键字: 应用统计硕士 概率论

考研英语核心词汇营

背词+听课+练习+督学,学习得礼盒

更多资料
更多>>
更多内容

关注新东方在线考研服务号

获得21考研真题及答案解析

1. 打开手机微信【扫一扫】,识别上方二维码;
2.点击【关注公众号】,获取资料大礼包。

近10年考研真题及答案免费下载
更多>>
更多公开课>>
更多>>
更多资料