特惠-26考研冲刺
特惠-27考研课
双证-在职硕士
免联考-同等学力
复试分数线
26复试全面指导
模拟复试面试
26考研-全套真题
26考研估分
保研-路线图
27考研-智能择校
27考研-英语测评
27考研-新大纲对比
热门-计算机择校
扫码加入训练营
牢记核心词
学习得礼盒
610-单考数学考试大纲
一、一元微积分学
1、函数、极限、连续
考试内容
函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、
分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立。
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的
概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:
单调有界准则和夹逼准则,两个重要极限。
函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。
考试要求
(1)理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;
(2)了解函数的有界性、单调性、周期性和奇偶性;
(3)理解复合函数及分段函数的概念,了解反函数及隐函数的概念;
(4)掌握基本初等函数的性质及其图形,了解初等函数的概念;
(5)理解数列极限和函数极限(包括左极限与右极限)的概念,以及函数极限存在与左右
极限之间的关系;
(6)了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重
要极限求极限的方法;
(7)理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及
其与无穷小量的关系;
(8)理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型;
(9)了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、
最大值和最小值定理、介值定理),并会应用这些性质。
2、一元函数微分学
考试内容
导数和微分的概念,导数的几何意义,函数的可导性与连续性之间的关系,平面曲线的
切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数、隐函数以
及参数方程所确定的函数的微分法,高阶导数,微分形式不变性,微分中值定理,洛必达法
1
则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,
函数的最大值与最小值。
考试要求
(1)理解导数的概念及可导性与连续性之间的关系,理解导数的几何意义,会求平面曲线
的切线方程和法线方程,理解函数的可导性和连续性之间的关系;
(2)掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分
段函数的导数,会求反函数、隐函数以及参数方程所确定的函数的导数,了解高阶导数的概
念,会求简单函数的高阶导数;
(3)了解微分的概念、导数与微分之间的关系以及一阶微分形式不变性,会求函数的微分;
(4)掌握罗尔定理、拉格朗日中值定理,柯西中值定理的应用;
(5)掌握用洛必达法则求未定式极限的方法;
(6)掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值
的求法及其应用;
(7)会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线(含水平、铅直和斜
渐近线);
(8)会描绘函数的图形。
3、一元函数积分学
考试内容
原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和基本
性质,定积分中值定理,积分上限的函数及其导数,牛顿-莱布尼茨公式,不定积分和定积
分的换元积分法与分部积分法,反常(广义)积分,定积分的应用。
考试要求
(1)理解原函数、不定积分和定积分的概念,掌握不定积分基本公式,掌握不定积分性质
及其换元积分法和分部积分法;
(2)掌握定积分中值定理,理解积分变限函数并会求它的导数,掌握牛顿-莱布尼茨公式;
掌握定积分的性质,以及定积分的换元积分法和分部积分法;
(3)了解广义积分的概念,会计算广义积分;
(4)会利用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积。
2
二、多元函数微积分学
1、多元函数微分学
考试内容
多元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念,有界闭区域
上多元连续函数的性质。多元函数的偏导数和全微分,全微分存在的必要条件和充分条件,
多元复合函数、隐函数的求导法,二阶偏导数。掌握方向导数和梯度的计算及两者的关系,
空间曲线的切线和法平面,空间曲面的切平面和法线,多元函数的极值和条件极值,多元函
数的最大值、最小值及其简单应用。
考试要求
(1)理解多元函数的概念,理解二元函数的几何意义;
(2)了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质;
(3)理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充
分条件,了解全微分形式不变性;
(4)理解方向导数与梯度的概念,并掌握其计算方法;
(5)会求多元复合函数一阶、二阶偏导数,会求多元隐函数的一阶偏导数;
(6)会求空间曲线的切线和法平面方程以及空间曲面的切平面和法线方程;
(7)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元
函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简
单多元函数的最大值和最小值,会解决一些简单的应用问题。
2、多元函数积分学
考试内容
二重积分与三重积分的概念、性质、计算和应用,两类曲线积分的概念、性质及计算,
格林公式及其应用,平面曲线积分与路径无关的条件,两类曲面积分的概念、性质及计算,
高斯公式及其应用。
考试要求
(1)理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理;
(2)掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、
球面坐标);
(3)理解两类曲线积分的概念,掌握两类曲线积分的计算;
3
(4)掌握格林公式并会运用平面曲线积分与路径无关的条件;
(5)了解两类曲面积分的概念、性质和计算,会用高斯公式计算曲面积分;
(6)会用重积分求平面图形的面积、空间立体的体积。
三、常微分方程
考试内容
常微分方程的基本概念,变量可分离的微分方程,齐次微分方程,一阶线性微分方程,
全微分方程,可降阶的高阶微分方程,线性微分方程解的性质及解的结构定理,常系数齐次
线性微分方程的通解,简单的二阶常系数非齐次线性微分方程的通解。
考试要求
(1)了解微分方程及其阶、解、通解、初始条件和特解等概念;
(2)掌握变量可分离的微分方程及一阶线性微分方程的解法;
(3)会解齐次微分方程和全微分方程,会用简单的变量代换解某些微分方程;
(4)会求可降阶的高阶微分方程;
(5)理解线性微分方程解的性质及解的结构;
(6)掌握常系数齐次线性微分方程的解法,并会求解常系数齐次线性微分方程,会解非齐
次项为多项式、指数函数、正弦函数、余弦函数以及它们的和与乘积的二阶常系数非齐次线
性微分方程。
【专业课必备:2026考研自命题考试大纲】
【查询2026考研招生人数、招生专业、参考书】
本文关键字: 考研大纲及参考书目
资料下载
2014年-2025年考研历年真题汇总
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
考研大纲PDF电子版下载-历年(附解析)
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
2026年考研政数英备考资料zip压缩包
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
考研英语大纲词汇5500打印版(基础必备)
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
新东方在线考试模拟题【12套】
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
2026年考研专业课知识点总结
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
新东方考研资料下载地址
发布时间:2023-05-17新东方在线考研资料合集
下载方式:微信扫码,获取网盘链接

目录:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
2.2013-2023年专业课考试历年真题及解析PDF版
3.24考研复习备考资料大合集:大纲+备考资料+词汇书+考前押题+自命题
资料介绍:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
、
2.2013-2023年专业课考试历年真题及解析PDF版


3.24考研复习备考资料大合集

3.24考研复习备考资料:考研大纲

3.24考研复习备考资料:政数英备考资料+自命题真题

------------------
考研备考过程中,尤其是专业课部分,参考往年的考试真题,对于我们的复习有更好的帮助。北京大学考研真题资料都有哪些?小编为大家进行了汇总。
北京大学考研真题资料-公共课

北京大学考研真题资料-专业课


以上就是关于“北京大学考研真题资料下载(历年汇总)”的整理,更多考研资料下载,请关注微信获取下载地址。
2024考研公共课必背知识点汇总
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
2013-2023考研历年真题汇总
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
考研英语大纲词汇(PDF可打印)
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
2024考研专业课知识点总结
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
2023考研政治 内部押题 PDF
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
徐涛:23考研预测六套卷
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
考研政数英冲刺资料最新整理
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
23考研答题卡模板打印版
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
2023考研大纲词汇5500PDF电子版
发布时间:2022-07-28扫码添加【考研班主任】
即可领取资料包
考研历年真题(公共课+专业课)
发布时间:2022-07-28扫码添加【考研班主任】
即可领取资料包
考研英语阅读100篇附解析及答案
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
新东方考研学霸笔记整理(打印版)
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
2001-2021年考研英语真题答案(可打印版)
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
考研英语词汇5500(完整版下载)
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
2022考研政审表模板精选10套
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
历年考研真题及答案 下载
发布时间:2021-12-09扫码添加【考研班主任】
即可领取资料包
考研政审表模板汇总
发布时间:2020-06-17扫码添加【考研班主任】
即可领取资料包
近5年考研英语真题汇总
发布时间:2020-06-17扫码添加【考研班主任】
即可领取资料包
考研英语大纲词汇5500
发布时间:2020-06-17扫码添加【考研班主任】
即可领取资料包
2022考研12大学科专业排名汇总
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
2023考研政治复习备考资料【珍藏版】
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
考研英语万能模板+必备词汇+范文
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
考研数学一、二、三历年真题整理
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
添加班主任领资料
添加考研班主任
免费领取考研历年真题等复习干货资料

推荐阅读
试卷内容结构 1 新闻采访 约40分; 3 新闻编辑 约20分; 试卷题型结构 1 综合分析题约60分; 2 写作题约90分。 2 新
来源 : 网络 2025-09-23 08:48:00 关键字 : 考研大纲及参考书目
试卷内容结构 1 新闻学概论 约35分; 3 中外新闻史 约40分; 2 传播学 约40分; 4 网络与新媒体概论 约35分。 试卷题
来源 : 网络 2025-09-23 08:48:00 关键字 : 考研大纲及参考书目
试卷内容结构 材料基本性质(约20分),气硬性胶凝材料、混凝土、建筑砂浆、砌筑材料、沥青及 沥青混合料等非金属材料(约110分),
来源 : 网络 2025-09-23 08:48:00 关键字 : 考研大纲及参考书目
试卷内容结构 发展经济学 50分 农业经济学 50分 管理学 50分 试卷题型结构 简答题 60分 占40% 6小题 论述题
来源 : 网络 2025-09-23 08:48:00 关键字 : 考研大纲及参考书目
试卷内容结构 主要考察基本理论知识,占比 60%;其次考察知识综合应用能力,占比 40%。 试卷题型结构 名词解释 20分 占13
来源 : 网络 2025-09-23 08:48:00 关键字 : 考研大纲及参考书目
资料下载
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
新东方在线考研资料合集
下载方式:微信扫码,获取网盘链接

目录:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
2.2013-2023年专业课考试历年真题及解析PDF版
3.24考研复习备考资料大合集:大纲+备考资料+词汇书+考前押题+自命题
资料介绍:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
、
2.2013-2023年专业课考试历年真题及解析PDF版


3.24考研复习备考资料大合集

3.24考研复习备考资料:考研大纲

3.24考研复习备考资料:政数英备考资料+自命题真题

------------------
考研备考过程中,尤其是专业课部分,参考往年的考试真题,对于我们的复习有更好的帮助。北京大学考研真题资料都有哪些?小编为大家进行了汇总。
北京大学考研真题资料-公共课

北京大学考研真题资料-专业课


以上就是关于“北京大学考研真题资料下载(历年汇总)”的整理,更多考研资料下载,请关注微信获取下载地址。
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
阅读排行榜
相关内容