特惠-26考研冲刺
特惠-27考研课
双证-在职硕士
免联考-同等学力
复试分数线
26复试全面指导
模拟复试面试
26考研-全套真题
26考研估分
保研-路线图
27考研-智能择校
27考研-英语测评
27考研-新大纲对比
热门-计算机择校
扫码加入训练营
牢记核心词
学习得礼盒
科目名称 数学分析 科目代码 601
考试范围及要点
1、变量,函数,极限,连续
理解函数的概念,掌握函数的几何特性,理解复合函数,反函数,掌握基本初等函数的性质及图形。理解数列极限的定义,会利用定义来证明数列的极限。掌握数列极限的性质,了解有界数列的定义,掌握数列极限的运算,掌握单调有界数列的定义,了解极限存在的判别法(单调有界数列比有极限)。了解无穷大量和无穷小量无穷小量的阶的定义,了解无穷大量和无穷小量的几何意义。掌握无穷大量和无穷小量的关系和一些运算法则。理解函数在一点的极限的定义及其几何意义,掌握函数极限的性质和运算法则。掌握函数极限和数列极限之间的关系。理解单侧极限的定义(左极限、右极限),掌握函数在无穷远处极限和函数值趋于无穷大时极限的定义(正无限远和负无限远),掌握两个常用的不等式和两个重要的极限(夹逼准则和单调有界准则),会用两个极限求极限。掌握函数在一点连续的定义(连续、左连续、右连续),理解连续函数的性质和运算,了解初等函数的连续性,了解不连续点的定义,会判断函数的间断点及其类型(第一类、第二类和可移),了解闭区间上连续函数的性质(有界性、具有最大最小值、零点存在定理),掌握函数一致连续的定义及其几何意义,会利用定义证明函数的一致连续性。理解子列、上确界和下确界的定义,并会求数列的上下确界。掌握实数的基本定理(区间套定理,致密性定理,柯西收敛原理,有限覆盖定理),了解闭区间上连续函数性质的证明。
2、 单变量微分学
理解导数和微分的定义及几何意义,了解函数的可导性与连续性之间的关系。会利用定义求简单函数的导数,掌握简单函数的导数公式和求导法则(和差运算、数乘运算、乘积运算、相除运算),掌握反函数和复合函数的求导法,了解对数函数求导法。了解微分的运算法则和一阶形式不变性,理解高阶导数与高阶微分的定义,会求隐函数及参数方程所表示的函数的一阶和高阶导数,了解不可导函数的形式,掌握高阶导数的运算法则。理解并会运用微分学的基本定理(费尔马定理,拉格朗日定理,柯希定理),会利用导数作近似计算,掌握泰勒公式,会求函数在给定点的泰勒展开式。掌握函数的极大值与极小值,最大值和最小值,凸性和函数的升降,掌握用导数判断函数的单调性和求极值的方法。掌握渐近线的求法(水平、垂直和斜渐近线)。根据导数判断所给函数的上升与下降,凸性和极值,并出函数的图形。知道什么是曲线的曲率,弧长的微分,掌握曲率的计算,了解待定型(及待定型),掌握求待定型的方法(洛必达法则),会求方程的近似解。
3、单变量积分学
理解不定积分和定积分的定义及性质,掌握不定积分的基本公式与运算法则,会计算不定积分(“凑”微分法、换元积分法、分部积分法、有理函数积分法),会求简单的有理函数的积分,掌握其他类型的积分法。掌握定积分存在的充分必要条件(第一充要条件、第二充要条件),了解可积函数类,掌握定积分的计算――基本公式(牛顿-莱布尼兹公式)、换元公式、分部积分公式,会利用定积分来求和式的极限。了解椭圆积分(第一类、第二类、第三类)。掌握定积分的应用和近似计算,会计算平面图形的面积,曲线的弧长,体积,旋转曲面的面积,质心,平均值,功。知道广义积分分为无限区间上的广义积分和无界函数的积分两种,了解无穷限广义积分和无界函数广义积分的概念,会利用定义来求这两类广义积分。了解无穷限广义积分和级数之间的关系,掌握这两类积分收敛的判别法(比较判别发、柯希判别法及其极限形式),会证明广义积分的敛散性,了解什么是柯西主值,会求广义积分的柯西主值。
4、 数项级数,函数项级数,幂级数
理解上极限和下极限的概念以及上下极限和极限的关系。理解无穷级数和级数收敛的定义,了解收敛级数的一些基本性质,掌握柯西收敛原理,会利用柯西收敛原理判别级数的收敛性。理解正项级数的定义,掌握正相级数收敛的基本定理和判别法(比较判别发、柯西判别法、达朗贝尔判别法及其极限形式),了解柯西积分判别法,并会利用这些判别法来证明正项级数的敛散性。理解绝对收敛和条件收敛的定义及其之间的关系。掌握交错级数的莱布尼兹定理,掌握阿贝尔判别法和狄立克莱判别法,并会利用他们来判断任意项级数的敛散性。了解绝对收敛级数和条件收敛级数的性质。理解函数项级数的概念,掌握一致收敛的定义及一致收敛级数的几何意义,会判断函数列的一致收敛性,理解一致收敛级数的性质(和的连续性、逐项求导、逐项求积),掌握一致收敛级数的判别法(魏尔斯特拉斯判别法、狄尼定理、狄立克莱判别法、阿贝尔判别法),会讨论函数项级数的敛散性。理解幂级数的定义及性质,会求幂级数的收敛半径,了解函数的幂级数展开,并会对简单的函数进行幂级数展开,了解魏尔斯特拉斯逼近定理。理解富里埃级数的定义和形式,掌握黎曼引理,了解富里埃级数的一些性质,理解狄尼定理及其推论,掌握lipschitz判别法,掌握函数的富里埃级数展开,会将简单函数展开为富里埃级数(正弦级数和余弦级数)。了解周期为T的函数的富里埃级数展开,知道富里埃级数的复数形式,了解富里埃变换和富里埃逆变换的概念,掌握富里埃变换的一些性质(线性、平移、导数、复数),会求函数的富里埃变换。
5、 多元函数的极限论
掌握平面点集上的有关定义(邻域,点列的极限,开集,闭集,区域,内点,外点、聚点),了解平面点集的几个基本定理(矩形套定理、致密性定理、有限覆盖定理、收敛原理),理解多元函数的概念(二元函数),理解二元函数极限和连续性的定义,了解有界闭区域上连续函数的性质(有界性定理、一致连续性定理、最大值最小值定理、零点存在定理),掌握二重极限和二次极限的定义,并会求二元函数的二重极限和二次极限,了解二重极限和二次极限之间的关系。
6、多变量微分学
理解偏导数和全微分的定义,了解全微分存在的必要条件和充分条件,会求多元函数的偏导数和全微分。理解高阶偏导数和高阶全微分的概念,掌握复合函数求偏导的链式法则,会求复合函数的二阶偏导数,会求隐函数(包括由方程(组)所确定的隐函数)的偏导数。了解空间曲线的切线与法平面的求法,曲面的切平面与法线的求法,理解方向导数与梯度的概念及其计算方法。知道多元函数的泰勒公式。了解极值,极值点和条件极值的概念,会求函数的极值,了解最最小二乘法,理解方程或方程组的隐函数存在定理,理解函数行列式的性质。
7、 含参变量的积分和广义积分
理解含参变量的积分及由含参变量积分所确定的函数的性质(连续性,可微性,可积性),了解含参变量广义积分的定义,掌握一致收敛的定义,一致收敛积分的判别法(魏尔斯特拉斯判别法),及一致收敛积分的性质(连续性定理,积分顺序交换定理,积分号下求导定理),了解欧拉积分。
8、多变量积分学
掌握二重积分、三重积分、第一类曲线积分、第一类曲面积分、第二类曲线积分、第二类曲面积分的概念及其积分的性质。掌握二重积分与三重积分的计算及应用(化二重积分为二次积分,用极坐标计算二重积分,二重积分的一般变量替换,化三重积分为三次积分,三重积分的变量替换)。了解积分在物理上的应用(质心,矩,引力)。了解广义重积分的定义。掌握第一、二类曲线积分和第一、二类曲面积分的计算,会计算曲面的面积,会化第一类曲面积分为二重积分。了解两类曲线积分之间和两类曲面积分之间的联系,掌握各种积分间的联系(格林公式、高斯公式、斯托克司公式),会利用这些公式计算曲线的积分。会使用平面曲线积分与路径无关的条件,了解场及向量场的散度与旋度的概念。会用重积分、曲线积分及曲面积分求一些几何量与物理量(如体积、曲面面积、弧长、质量、重心、转动惯量、引力、功等)。
参考书目:
《数学分析》(上、下), 华东师范大学数学系编著,高等教育出版社出版,2010年第四版
【专业课必备:2026考研自命题考试大纲】
【查询2026考研招生人数、招生专业、参考书】
本文关键字: 考研大纲及参考书目
资料下载
2014年-2025年考研历年真题汇总
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
考研大纲PDF电子版下载-历年(附解析)
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
2026年考研政数英备考资料zip压缩包
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
考研英语大纲词汇5500打印版(基础必备)
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
新东方在线考试模拟题【12套】
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
2026年考研专业课知识点总结
发布时间:2024-04-25扫码添加【考研班主任】
即可领取资料包
新东方考研资料下载地址
发布时间:2023-05-17新东方在线考研资料合集
下载方式:微信扫码,获取网盘链接

目录:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
2.2013-2023年专业课考试历年真题及解析PDF版
3.24考研复习备考资料大合集:大纲+备考资料+词汇书+考前押题+自命题
资料介绍:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
、
2.2013-2023年专业课考试历年真题及解析PDF版


3.24考研复习备考资料大合集

3.24考研复习备考资料:考研大纲

3.24考研复习备考资料:政数英备考资料+自命题真题

------------------
考研备考过程中,尤其是专业课部分,参考往年的考试真题,对于我们的复习有更好的帮助。北京大学考研真题资料都有哪些?小编为大家进行了汇总。
北京大学考研真题资料-公共课

北京大学考研真题资料-专业课


以上就是关于“北京大学考研真题资料下载(历年汇总)”的整理,更多考研资料下载,请关注微信获取下载地址。
2024考研公共课必背知识点汇总
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
2013-2023考研历年真题汇总
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
考研英语大纲词汇(PDF可打印)
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
2024考研专业课知识点总结
发布时间:2023-01-03扫码添加【考研班主任】
即可领取资料包
2023考研政治 内部押题 PDF
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
徐涛:23考研预测六套卷
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
考研政数英冲刺资料最新整理
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
23考研答题卡模板打印版
发布时间:2022-11-16扫码添加【考研班主任】
即可领取资料包
2023考研大纲词汇5500PDF电子版
发布时间:2022-07-28扫码添加【考研班主任】
即可领取资料包
考研历年真题(公共课+专业课)
发布时间:2022-07-28扫码添加【考研班主任】
即可领取资料包
考研英语阅读100篇附解析及答案
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
新东方考研学霸笔记整理(打印版)
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
2001-2021年考研英语真题答案(可打印版)
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
考研英语词汇5500(完整版下载)
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
2022考研政审表模板精选10套
发布时间:2022-01-07扫码添加【考研班主任】
即可领取资料包
历年考研真题及答案 下载
发布时间:2021-12-09扫码添加【考研班主任】
即可领取资料包
考研政审表模板汇总
发布时间:2020-06-17扫码添加【考研班主任】
即可领取资料包
近5年考研英语真题汇总
发布时间:2020-06-17扫码添加【考研班主任】
即可领取资料包
考研英语大纲词汇5500
发布时间:2020-06-17扫码添加【考研班主任】
即可领取资料包
2022考研12大学科专业排名汇总
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
2023考研政治复习备考资料【珍藏版】
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
考研英语万能模板+必备词汇+范文
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
考研数学一、二、三历年真题整理
发布时间:2019-11-21扫码添加【考研班主任】
即可领取资料包
添加班主任领资料
添加考研班主任
免费领取考研历年真题等复习干货资料

推荐阅读
广西科技大学硕士研究生招生考试初试科目考试大纲 357 翻译基础(英语) 专业:055101英语笔译 一、考试的总体要求 学院:
来源 : 网络 2025-09-29 08:27:00 关键字 : 考研大纲及参考书目
广西科技大学硕士研究生招生考试初试科目考试大纲 432 统计学 专业:0252 应用统计 一、考试的总体要求 学院: 理学院
来源 : 网络 2025-09-29 08:27:00 关键字 : 考研大纲及参考书目
广西科技大学硕士研究生招生考试初试科目考试大纲 434 国际商务专业基础 专业:0254 国际商务 一、考试的总体要求 学院
来源 : 网络 2025-09-29 08:27:00 关键字 : 考研大纲及参考书目
广西科技大学硕士研究生招生考试初试科目考试大纲 436资产评估专业基础 专业: 0256 资产评估 一、考试的总体要求 学院
来源 : 网络 2025-09-29 08:27:00 关键字 : 考研大纲及参考书目
广西科技大学硕士研究生招生考试初试科目考试大纲 437 社会工作实务 专业:0352 社会工作 一、考试的总体要求 学院:
来源 : 网络 2025-09-29 08:27:00 关键字 : 考研大纲及参考书目
资料下载
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
新东方在线考研资料合集
下载方式:微信扫码,获取网盘链接

目录:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
2.2013-2023年专业课考试历年真题及解析PDF版
3.24考研复习备考资料大合集:大纲+备考资料+词汇书+考前押题+自命题
资料介绍:
1.2013-2023年近10年政数英真题及解析PDF版(新东方)
、
2.2013-2023年专业课考试历年真题及解析PDF版


3.24考研复习备考资料大合集

3.24考研复习备考资料:考研大纲

3.24考研复习备考资料:政数英备考资料+自命题真题

------------------
考研备考过程中,尤其是专业课部分,参考往年的考试真题,对于我们的复习有更好的帮助。北京大学考研真题资料都有哪些?小编为大家进行了汇总。
北京大学考研真题资料-公共课

北京大学考研真题资料-专业课


以上就是关于“北京大学考研真题资料下载(历年汇总)”的整理,更多考研资料下载,请关注微信获取下载地址。
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
扫码添加【考研班主任】
即可领取资料包
阅读排行榜
相关内容